Seagate provides proof of HDD life: Enterprise and Cloud enhancementsd

July 25, 2013 1 Comment »

Storage I/O trends

Proof of life: Enterprise Hard Disk Drives (HDD’s) are enhanced

Last week while hard disk drive (HDD) competitor Western Digital (WD) was announcing yet another (Velobit) in a string of acquisitions ( e.g. earlier included Stec, Arkeia) and investments (Skyera), Seagate announced new enterprise class HDD’s to their portfolio. Note that it was only two years ago that WD acquired Hitachi Global Storage Technologies (HGST) the disk drive manufacturing business of Hitachi Ltd. (not to be confused with HDS).

Seagate

Similar to WD expanding their presence in the growing nand flash SSD market, Seagate also in May of this year extended their existing enterprise class SSD portfolio. These enhancements included new drives with 12Gbs SAS interface, along with a partnership (and investment) with PCIe flash card startup vendor Virident. Other PCIe flash SSD card vendors (manufacturers and OEMs) include Cisco, Dell, EMC, FusionIO, HP, IBM, LSI, Micron, NetApp and Oracle among others.

These new Seagate enterprise class HDD’s are designed for use in cloud and traditional data center servers and storage systems. A month or two ago Seagate also announced new ultra-thin (5mm) client (aka desktop) class HDD’s along with a 3.5 inch 4TB video optimized HDD. The video optimized HDD’s are intended for Digital Video Recorders (DVR’s), Set Top Boxes (STB’s) or other similar applications.

What was announced?

Specifically what Seagate announced were two enterprise class drives, one for performance (e.g. 1.2TB 10K) and the other for space capacity (e.g. 4TB).

 

Enterprise High Performance 10K.7 (aka formerly known as Savio)

Enterprise Terascale (aka formerly known as constellation)

Class/category

Enterprise / High Performance

Enterprise High Capacity

Form factor

2.5” Small Form Factor (SFF)

3.5”

Interface

6Gbs SAS

6Gbs SATA

Space capacity

1,200GB (1.2TB)

4TB

RPM speed

10,000

5,900

Average seek

2.9 ms

12 ms

DRAM cache

64MB

64MB

Power idle / operating

4.8 watts

5.49 / 6.49 watts

Intelligent Power Management (IPM)

Yes – Seagate PowerChoice

Yes – Seagate PowerChoice

Warranty

Limited 5 years

Limited 3 years

Instant Secure Erase (ISE)

Yes

Optional

Other features

RAID Rebuild assist, Self-Encrypting Device (SED)

Advanced Format (AF) 4K block in addition to standard 512 byte sectors

Use cases

Replace earlier generation 3.5” 15K SAS and Fibre Channel HDD’s for higher performance applications including file systems, databases where SSD are not practical fit.

Backup and data protection, replication, copy operations for erasure coding and data dispersal, active in dormant archives, unstructured NAS, big data, data warehouse, cloud and object storage.

Note the Seagate Terascale has a disk rotation speed of 5,900 (5.9K RPM) which is not a typo given the more traditional 5.4K RPM drives. This slight increase in performance from 5.4K to 5.9K should give when combined with other enhancements (e.g. firmware, electronics) to boost performance for higher capacity workloads.

Let us watch for some performance numbers to be published by Seagate or others. Note that I have not had a chance to try these new drives yet, however look forward to getting my hands on them (among others) sometime in the future for a test drive to add to the growing list found here (hey Seagate and WD, that’s a hint ;) ).

What this all means?

Storage I/O trends

Wait, weren’t HDD’s supposed to be dead or dying?

Some people just like new and emerging things and thus will declare anything existing or that they have lost interest in (or their jobs need it) as old, boring or dead.

For example if you listen to some, they may say nand flash SSD are also dead or dying. For what it is worth, imho nand flash-based SSDs still have a bright future in front of them even with new technologies emerging as they will take time to mature (read more here or listen here).

However, the reality is that for at least the next decade, like them or not, HDD’s will continue to play a role that is also evolving. Thus, these and other improvements with HDD’s will be needed until current nand flash or emerging PCM (Phase Change Memory) among other forms of SSD are capable of picking up all the storage workloads in a cost-effective way.

Btw, yes, I am also a fan and user of nand flash-based SSD’s, in addition to HDD’s and see roles for both as being viable complementing each other for traditional, virtual and cloud environments.

In short, HDD’s will keep spinning (pun intended) for some time granted their roles and usage will also evolve similar to that of magnetic tape.

Storage I/O trends

With this announcement by Seagate along with other enhancements from WD show that the HDD will not only see its 60th birthday, (and here), it will probably also easily see its 70th and not from the comfort of a computer museum. The reason is that there is yet another wave of HDD improvements just around the corner including Shingled Magnetic Recording (SMR) (more info here) along with Heat Assisted Magnetic Recording (HAMR) among others. Watch for more on HAMR and SMR in future posts. With these and other enhancements, we should be able to see a return to the rapid density improvements with HDD’s observed during the mid to late 2000 era when Perpendicular recording became available.

What is up with this ISE stuff is that the same as what Xiotech (e.g. XIO) had?

Is this the same technology that Xiotech (now Xio) referred to the ISE the answer is no. This Seagate ISE is for fast secure erase of data on disk. The benefit of Instant Secure Erase (ISE) is to cut from hours or days the time required to erase a drive for secure disposal to seconds (or less). For those environments that already factor drives erase time as part of those overall costs, this can increase the useful time in service to help improve TCO and ROI.

Wait a minute, aren’t slower RPM’s supposed to be lower performance?

Some of you might be wondering or asking the question of wait, how can a 10,000 revolution per minute (10K RPM) HDD be considered fast vs. a 15K HDD, let alone SSD?

Storage I/O trends

There is a trend occurring with HDD’s that the old rules of IOPS or performance being tied directly to the size and rotational speed (RPM’s) of drives, along with their interfaces. This comes down to being careful to judge a book or in this case a drive by its cover. While RPM’s do have an impact on performance, new generation drives at 10K such as some 2.5” models are delivering performance equal to or better than earlier generation 3.5” 15K device’s.

Likewise, there are similar improvements with 5.4K devices vs. previous generation 7.2K models. As you will see in some of the results found here, not all the old rules of thumbs when it comes to drive performance are still valid. Likewise, keep those metrics that matter in the proper context.

storage
Click on above image to see various performance results

For example as seen in the results (above), the more DRAM or DDR cache on the drives has a positive impact on sequential reads which can be good news if that is what your applications need. Thus, do your homework and avoid judging a device simply by its RPM, interface or form factor.

Other considerations, temperature and vibration

Another consideration is that with increased density of more drives being placed in a given amount of space, some of which may not have the best climate controls, humidity and vibration are concerns. Thus, the importance of drives having vibration dampening or safeguards to keep up performance are important. Likewise, even though drive heads and platters are sealed, there are also considerations that need to be taken care of for humidity in data center or cloud service providers in hot environments near the equator.

If this is not connecting with you, think about how close parts of Southeast Asia and the India subcontinent are to the equator along with the rapid growth and low-cost focus occurring there. Your data center might be temperature and humidity controlled, however others who very focused on cost cutting may not be as concerned with normal facilities best practices.

What type of drives should be used for cloud, virtual and traditional storage?

Good question and one where the answer should be it depends upon what you are trying or need to do (e.g. see previous posts here or here and here (via Seagate)).For example here are some tips for big data storage and storage making decisions in general.

Disclosure

Seagate recently invited me along with several other industry analysts to their cloud storage analyst summit in San Francisco where they covered roundtrip coach airfare, lodging, airport transfers and a nice dinner at the Epic Roast house.

hdd image

I also have received in the past a couple of Momentus XT HHDD (aka SSHD) from Seagate. These are in addition to those that I bought including various Seagate, WD along with HGST, Fujitsu, Toshiba and Samsung (SSD and HDD’s) that I use for various things.

Ok, nuff said (for now).

Cheers gs

About Greg Schulz

IT Advisory Analyst and Consultant covering data infrastructure topics. Author of the books “Cloud and Virtual Data Storage Networking” (CRC Press), “The Green and Virtual Data Center” (CRC Press) and “Resilient Storage Networks: Designing Flexible Scalable Data Infrastructures” (Elsevier). Have worked in IT for various organizations, have been a vendor/var, in addition to having been an analyst. As comfortable looking around under data center floor tiles as discussing software, hardware, services and best practices. Learn more at http://storageio.com

Pin It

One Comment

Add Comment Register



Leave a Reply